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Abstract In many global optimization problems motivated by engineering applications,
the number of function evaluations is severely limited by time or cost. To ensure that each
evaluation contributes to the localization of good candidates for the role of global minimizer, a
sequential choice of evaluation points is usually carried out. In particular, when Kriging is used
to interpolate past evaluations, the uncertainty associated with the lack of information on the
function can be expressed and used to compute a number of criteria accounting for the interest
of an additional evaluation at any given point. This paper introduces minimizers entropy as a
new Kriging-based criterion for the sequential choice of points at which the function should
be evaluated. Based on stepwise uncertainty reduction, it accounts for the informational
gain on the minimizer expected from a new evaluation. The criterion is approximated using
conditional simulations of the Gaussian process model behind Kriging, and then inserted
into an algorithm similar in spirit to the Efficient Global Optimization (EGO) algorithm. An
empirical comparison is carried out between our criterion and expected improvement, one of
the reference criteria in the literature. Experimental results indicate major evaluation savings
over EGO. Finally, the method, which we call IAGO (for Informational Approach to Global
Optimization), is extended to robust optimization problems, where both the factors to be
tuned and the function evaluations are corrupted by noise.
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1 Introduction

This paper is devoted to global optimization in a context of expensive function evaluation.
The objective is to find global minimizers in X (the factor space, a bounded subset of R

d )
of an unknown function f : X → R, using a very limited number of function evaluations.
Note that the global minimizer may not be unique (any global minimizer will be denoted
as x∗). Such a problem is frequently encountered in the industrial world. For instance, in
the automotive industry, optimal crash-related parameters are obtained using costly real tests
and time-consuming computer simulations (a single simulation of crash-related deformations
may take up to 24 h on dedicated servers). It then becomes essential to favor optimization
methods that use the dramatically scarce information as efficiently as possible.

To make up for the lack of knowledge on the function, surrogate (also called meta or
approximate) models are used to obtain cheap approximations [13]. They turn out to be
convenient tools for visualizing the function behavior or suggesting the location of an addi-
tional point at which f should be evaluated in the search for x∗. Surrogate models based
on Gaussian processes have received particular attention. Known in geostatistics under the
name of Kriging since the early 1960s [15], Gaussian process models provide a probabilistic
framework to account for the uncertainty stemming from the lack of information on the sys-
tem. When dealing with an optimization problem, this framework allows the set of function
evaluations to be chosen efficiently [12–14].

In this context, several strategies have been proposed, with significant advantages over
traditional optimization methods when confronted to expensive-to-evaluate functions. Most
of them implicitly seek a likely value for x∗, and then assume it to be a suitable location for a
new evaluation of f . Yet, given existing evaluation results, the most likely location of a global
minimizer is not necessarily a good evaluation point to improve our knowledge on x∗. As
we shall show, by making full use of Kriging, it is instead possible to explicitly estimate the
probability distribution of the optimum location, which allows an information-based search
strategy.

Based on these observations, the present paper introduces minimizers entropy as a crite-
rion for the choice of new evaluation points. This criterion, directly inspired from stepwise
uncertainty reduction [9], is then inserted in an algorithm similar to the Efficient Global
Optimization (EGO) algorithm [14]. We call the resulting algorithm IAGO, for Informa-
tional Approach to Global Optimization.

Sect. 2 recalls the principle of Kriging-based optimization, along with some general ideas
on Gaussian process modeling that are used in Sect. 3 to build an estimate of the distribu-
tion of the global minimizers. Sect. 4 details the stepwise uncertainty reduction approach
applied to global optimization, while Sect. 5 describes the corresponding algorithm and its
extensions to noisy problems. Sect. 6 illustrates the behavior of the new algorithm on some
simple benchmark problems, along with its performances compared with those of the clas-
sical EGO algorithm, chosen for its good compromise between local and global search [17].
Finally, after a conclusion section and to make this paper self-contained, Sect. 8 recalls, as
an appendix, some more results on Gaussian process modeling and Kriging.

2 Kriging-based global optimization

When dealing with expensive-to-evaluate functions, optimization methods based on probabi-
listic surrogate models (and Kriging in particular) have significant advantages over traditional
optimization techniques, as they require fewer function evaluations to provide an acceptable
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solution. Kriging provides not only a cheap approximation of the function but also an esti-
mate of the potential error in this approximation. Numerous illustrations of this superiority
can be found in the literature (see, for instance, [6]) and many variations have been explored
(for extensive surveys, see [13] and [17]). As explained in this section, these methods deal
with the cost of evaluation using an adaptive sampling strategy, replacing the optimization
of the expensive-to-evaluate function f by a series of optimizations of a cheap criterion.

2.1 Gaussian process modeling and Kriging

This section briefly recalls the principle of Gaussian process (GP) modeling, and lays down
the necessary notation. A more detailed presentation is available in the appendix (Sect. 8).

When modeling with Gaussian processes, the function f is assumed to be a sample path
of a Gaussian random process F , with mean function m(x) and covariance function k(·, ·)
defined over X

2. If we denote (�, A, P) the underlying probability space, this amounts to
assuming that ∃ω ∈ �, such that F(ω, ·) = f (·). Whenever possible, we shall omit the
dependence of F in ω to simplify notation.

In particular, given a set of n evaluation points S = {x1, . . . , xn} (the design), ∀xi ∈
S the evaluation result f (xi ) is viewed as a sample value of the random variable F(xi ).
Kriging computes an unbiased linear predictor of F(x) in the vector space HS = span
{F(x1), . . . , F(xn)}, which can be written as

F̂(x) = λ(x)TFS, (1)

with FS = [F(x1), . . . , F(xn)]T, and λ(x) the vector of Kriging coefficients for the predic-
tion at x.

Given the covariance function of F , the Kriging coefficients can be computed along with
the variance of the prediction error

σ̂ 2(x) = var(F̂(x)− F(x)). (2)

The covariance function of F is chosen within a parametrized class (for instance, the Matérn
class), and its parameters are either estimated from the data or chosen a priori (see Sect. 8.3.2
for details on the choice of a covariance function).

Once f has been evaluated at all evaluation points in S, the predicted value of f at x is
given by

f̂ (x) = λ(x)TfS, (3)

with fS = [ f (x1), . . . , f (xn)]T (fS is viewed as a sample value of FS). The same results
could be derived in a Bayesian framework, where F(x) is Gaussian conditionally to the
evaluations carried out (FS = fS), with mean f̂ (x) and variance σ̂ 2(x).

Note that the random processes F(x) and F̂(x) satisfy

∀ xi ∈ S, F̂(xi ) = F(xi ), (4)

and that the prediction at xi ∈ S is f (xi ). When f is assumed to be evaluated exactly,
Kriging is thus an interpolation, with the considerable advantage over other interpolation
methods that it also provides an explicit characterization of the prediction error (zero-mean
Gaussian with variance σ̂ 2(x)).
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2.2 Adaptive sampling strategies

The general principle of optimization using Kriging is iteratively to evaluate f at a point
that optimizes a criterion based on the model obtained using previous evaluation results. The
simplest approach would be to choose a minimizer of the prediction f̂ as a new evaluation
point. However, by doing so, too much confidence would be put in the current prediction
and search is likely to stall on a local optimum (as illustrated by Fig. 1). To compromise
between local and global search, more emphasis has to be put on the prediction error, which
can indicate locations where additional evaluations are needed to improve confidence in the
model. This approach has led to a number of criteria to select additional evaluation points
based on both prediction and prediction error.

A standard example of such a criterion is expected improvement (EI) [18]. As the name
suggests, it involves computing how much improvement in the optimum is expected, if f is
evaluated at a given additional point. Let fmin be the best function value obtained so far. The
improvement expected from an additional evaluation of f at x given fS, the results of past
evaluations, can then be expressed as

EI(x) = E [max ( fmin − F (x) , 0) |FS = fS] .

Since F(x) is conditionally Gaussian with mean f̂ (x) and variance σ̂ 2(x),

EI(x) = σ̂ (x)

[
u�(u)+ d�

du
(u)

]
, (5)

Fig. 1 Naive approach to optimization using Kriging: (top) prediction f̂ (bold line) of the true function f
(dotted line, supposedly unknown) obtained from an initial design materialized by squares; (bottom) prediction
after seven iterations minimizing f̂
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Fig. 2 EI approach to optimization using Kriging: (top) prediction f̂ (bold line), 95% confidence intervals
computed using σ̂ (dashed line) and true function f (dotted line); (bottom) expected improvement

with

u = fmin − f̂ (x)

σ̂ (x)

and � the normal cumulative distribution function. The new evaluation point is then chosen
as a global maximizer of EI(x). An example is given on Fig. 2, where the problem that
deceived the naive method of Fig. 1 is directly solved with the EI criterion. This method has
been used for computer experiments in [17], while modified criteria have been used in [11]
and [26] to deal with noisy functions.

In [13] and [24], a fair number of alternative criteria are presented and compared. Although
quite different in their formulation, they generally aim to answer the same question: What
is the most likely position of x∗? Another, and probably more relevant, question is: Where
should the evaluation be carried out optimally to improve knowledge on the global minimiz-
ers?

In what follows, a criterion that addresses this question will be presented, along with its
performances. The reference for comparison will be EI, which is a reasonable compromise
between local and global search [17], and has been successfully used in many applications.

3 Estimating the distribution of x∗

Once a Kriging surrogate model f̂ has been obtained, any global minimizer of f̂ is a natural
approximation of x∗. However, it might be excessively daring to trust this approximation as
it does not take in account the uncertainty of the prediction. A more cautious approach to
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estimating x∗ is to use the probabilistic framework associated with F . Of course, x∗ is not
necessarily unique, and we shall focus on describing the set of all global minimizers of f as
efficiently as possible.

3.1 Probabilistic modeling of the global minimizers of f

According to the GP model, a global minimizer x∗ of f corresponds to a global minimizer
of this particular sample path of F . It seems therefore natural to use the GP model of f to
obtain a probabilistic model for x∗. Consider the random set M∗

X
of the global minimizers

of F over X, i.e., the set of all global minimizers for each sample path, which for any ω ∈ �

can be written as

M∗
X
(ω) = {x∗ ∈ X|F(ω, x∗) = min

u ∈ X

F(ω,u)}.

To ensure that M∗
X
(ω) is not empty for all ω, we assume that F has continuous sample paths

with probability one. This continuity can be ensured through a proper choice of covariance
function (see, e.g., [1]).

Let X∗ be a random vector uniformly distributed on M∗
X

(from now on, we omit the
dependency of M∗

X
in ω). The probability density function of this random vector conditional

to past evaluation results, that we shall thereafter call conditional density of the global min-
imizers and denote pX∗|fS

(x), is of great interest, as it allows one not only to estimate the
global minimizers of f (for example, through the maximization of their conditional density),
but also to characterize the uncertainty associated with this estimation. In fact, pX∗|fS

(x)

contains all of what has been assumed and learned about the system. However, no tracta-
ble analytical expression for pX∗|fS

(x) is available [2,19]. To overcome this difficulty, the
approach taken here is to consider a discrete version of the conditional distribution, and to
approximate it using Monte Carlo simulations.

Let G = {x1, . . . , xN } be a finite subset of X, M∗
G

be the random set of global minimizers
of F over G, and X∗

G
be a random vector uniformly distributed on M∗

G
. The conditional

probability mass function of X∗
G

given fS (or simply minimizers distribution) is then ∀x ∈ G

PX∗
G
|fS

(x) = P(X∗
G
= x |FS = fS).

It can be approximated using conditional simulations, i.e., simulations of F that satisfy
FS = fS. Assuming that non-conditional simulations are available, several methods exist to
make them conditional [4]. Conditioning by Kriging seems the most promising of them in
the present context and will be presented in the next section.

To keep the presentation simple, we assume in what follows that S ⊂ G.

3.2 Conditioning by Kriging

This method, due to G. Matheron, uses the unbiasedness of the Kriging prediction to transform
non-conditional simulations into simulations interpolating the results fS of the evaluations.
The idea is to sample from the conditional distribution of the prediction error F − F̂ rather
than from the conditional distribution of F , which is made easier by the fact that the statistical
properties of the prediction error do not depend on the result of the evaluations, nor on the
mean m(x) of F(x).

To present this more formally, let Z be a zero-mean Gaussian process with covariance
function k (the same as that of F) and Ẑ be its Kriging predictor based on the random variables
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Z(xi ), xi ∈ S, and consider the random process

T (x) = f̂ (x)+
[

Z(x)− Ẑ(x)
]
, (6)

where f̂ is the mean of the Kriging predictor based on the design points in S. Since this Kri-
ging predictor is an interpolator, at evaluation points in S, we have f̂ (xi ) = f (xi ). Equation 4
implies that Z(xi ) = Ẑ(xi ), which leads to T (xi ) = f (xi ), ∀xi ∈ S. In other words, T is
such that all its sample paths interpolate the known values of f . It is then easy to check that
T has the same finite-dimension distributions as F conditionally to past evaluation results
[7], simply because the prediction error Z − Ẑ , for Z , has the same distribution as the pre-
diction error for F , F − F̂ . Note that the same vector λ(x) of Kriging coefficients is used to
interpolate the data and the simulations at design points. Using (3), one can rewrite (6) as

T (x) = Z(x)+ λ(x)T [fS − ZS] , (7)

with ZS = [Z(x1), . . . , Z(xn)]T.
In summary, to simulate F over G conditionally to past evaluation results fS, we can

simulate a zero-mean Gaussian process Z over G, compute the prediction error for each
simulation and shift the prediction error around the desired mean f̂ . This is achieved by the
following procedure (illustrated on Fig. 3):

Fig. 3 Conditioning a simulation: (top) unknown real curve f (doted line), sample points (squares) and asso-
ciated Kriging prediction f̂ (bold line); (middle) non-conditional simulation z, sample points and associated
Kriging prediction ẑ (bold line); (bottom) the simulation of the Kriging error z − ẑ is picked up from the
non-conditional simulation and added to the Kriging prediction to get the conditional simulation (thin line)
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− compute, for every point in G, the vector of Kriging coefficients based on the design
points in S,

− compute the Kriging prediction f̂ (x) based on past evaluation results fS for every x in
G,

− collect non-conditional sample paths of Z over G (provided that a Gaussian sampler is
available, setting the proper covariance for the simulated vector can be achieved using,
for example, the Cholesky decomposition),

− apply (7) for each non conditional simulation and at every point in G. That is, to generate
t (x), a conditional simulation of T (x) from a non-conditional simulation z(x) of Z(x),
apply

t (x) = z(x)+ λ(x)T[fS − zS], (8)

where zS is the sampled valued of Z over S, which is available since S ⊂ G.

With this sampling method, it becomes straightforward to estimate PX∗
G
|fS

. Let x∗i be a
global minimizer of the i-th conditional simulation (i = 1, . . . , r ) over G (if it is not unique,
choose one randomly). Then, for any x in G, a classical estimator is

P̂X∗
G
|fS

(x) = 1

r

r∑
i=1

δx∗i (x), (9)

with δ the Kronecker symbol. Figure 4 presents the approximation P̂X∗
G
|fS

for an example
where locating a global minimizer is not easy. Knowing the conditional distribution of X∗

G

gives valuable information on the areas of X where a global minimizer might be located, and
that ought to be investigated. This idea will be detailed in the next section.

4 The stepwise uncertainty reduction strategy

The knowledge about the global minimizers of f is summarized by P̂X∗
G
|fS

. In order to
evaluate the interest of a new evaluation of f at a given point, a measure of the expected
information gain is required. An efficient measure is conditional entropy, as used in sequen-
tial testing [9] in the Stepwise Uncertainty Reduction (SUR) strategy. This section extends
the SUR strategy to global optimization.

4.1 Conditional entropy

The entropy of a discrete random variable U (expressed in bits) is defined as:

H(U ) = −
∑

u

P(U = u) log2 P(U = u).

H(U ) measures the spread of the distribution of U . It decreases as this distribution gets more
peaked. In particular:

− P̂X∗
G
|fS

(x) = 1/N ∀x ∈ G ⇒ H(X∗
G
) = log2(N ),

− P̂X∗
G
|fS

(x) =
{

0 if x �= x0

1 if x = x0
⇒ H(X∗

G
) = 0

Similarly, for any event B, the entropy of U relative to the probability measure P(.|B) is

H(U |B) = −
∑

u

P(U = u|B) log2 P(U = u|B).
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Fig. 4 Estimation of the distribution of X∗
G

: (top) Kriging interpolation, 95% confidence intervals and sample
points; (bottom) estimated distribution of X∗

G
using 10000 conditional simulations of F and a regular grid

for G

The conditional entropy of U given another discrete random variable V is

H(U |V ) =
∑

v

P(V = v)H(U |V = v),

and the conditional entropy of U given B and V is

H(U |B, V ) =
∑

v

P(V = v|B)H(U |B, V = v). (10)

Note that H(U |V ) and H(U |B, V ) are, despite the similarity of notation with conditional
expectation, deterministic quantities. More details on conditional entropy can be found in
[5].

4.2 Conditional minimizers entropy

Let FQ(x) be a discrete version of F(x), defined as FQ(x) = Q(F(x)) with Q a quantiza-
tion operator. Q is characterized by a finite set of M real numbers {y1, . . . , yM }, and defined
∀u ∈ R as

Q(u) = yk with k = arg min
i
|yi − u|. (11)

For optimization problems, the SUR strategy for the selection of the next value of x ∈ X

at which f will be evaluated will be based on H(X∗
G
|FS = fS, FQ(x)), the conditional

entropy of X∗
G

given the evaluation results {FS = fS} and FQ(x) (we shall refer to it later
on as conditional entropy of the minimizers, or simply minimizers entropy).
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Using (10) we can write

H(X∗
G
|FS = fS, FQ(x)) =

M∑
i=1

P(FQ(x) = yi |FS = fS)H(X∗
G
|FS = fS, FQ(x) = yi )

(12)

with

H(X∗
G
|FS = fS, FQ(x) = yi ) = −

∑
u∈G

PX∗
G
|fS,yi (u) log2 PX∗

G
|fS,yi (u),

and

PX∗
G
|fS,yi (u) = P(X∗ = u|FS = fS, FQ(x) = yi ).

H(X∗
G
|FS = fS, FQ(x)) is a measure of the anticipated uncertainty remaining in X∗

G

given the candidate evaluation point x and the result fS of the previous evaluations. Antici-
pation is introduced in (12) by considering the entropy of X∗

G
resulting from every possible

sample value of FQ(x). At each stage of the iterative optimization, the SUR strategy retains
for the next evaluation a point that minimizes the expected entropy of the minimizers dis-
tribution after the evaluation, i.e., a point that maximizes the expected gain in information
about X∗

G
.

The conditional entropy of the minimizers thus takes in account the conditional statistical
properties of F and particularly the covariance function of the model. There lies the interest
of the SUR strategy applied to global optimization. It makes use of what has been previously
assumed and learned about f to pick up the most informative evaluation point. By contrast,
the EI criterion (as most standard criteria) depends only on the conditional mean and variance
of F at the design point being considered.

5 Implementing the SUR strategy

5.1 IAGO algorithm

Our algorithm is similar in spirit to the strategy for Kriging-based optimization known as
Efficient Global Optimization (EGO) [14]. EGO starts with a small initial design, estimates
the parameters of the covariance function of F and computes the Kriging model. Based on
this model, an additional point is selected in the design space to be the location of the next
evaluation of f using the EI criterion. The parameters of the covariance function are then
re-estimated, the model re-computed, and the process of choosing new points continues until
the improvement expected from sampling additional points has become sufficiently small.
The IAGO algorithm uses the same idea of iterative incorporation of the obtained information
to the prior on the function, but with a different criterion.

To compute the minimizers entropy using (12), a new quantization operator Qx is used
for each value of x to improve the precision with which the empirical mean of entropy reduc-
tion over possible evaluation results is computed. We use the fact that F(x) is conditionally
Gaussian with mean f̂ (x) and variance σ̂ 2(x) obtained by Kriging, to select a set of values
{y1(x), . . . , yM (x)}, such that

P(FQx (x) = yi |FS = fS) = 1

M
∀ i ∈ [[1 : M]] . (13)

Here we used a set of ten possible values (M = 10).
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Table 1 Selection of a new evaluation point for f

Algorithm
Input: Set S = {x1, . . . , xn} of evaluation points and corresponding values fS of the function f
Output: Additional evaluation point xnew
1. Choose G, a discrete representation of X

2. Set covariance parameters either a priori or by maximum-likelihood estimation based on fS

3. Compute r non-conditional simulations over G

4. Compute f̂ (x) and σ̂ (x) over G by Kriging from fS

5. while the set of candidate points has not been entirely explored
6. do Take an untried point xc in the set of candidate points
7. Compute the parameters {y1, . . . , yM } of the quantization operator Q
8. Compute the Kriging coefficients at every point in G based on evaluation points in S and xc
9. for i ← 1 to M
10. do Construct conditional simulations using (7) and assuming that f (xc) = yi
11. Find a global minimizer x∗k of the k-th conditional simulation over G (k = 1, . . . , r )
12. Estimate PX∗

G
|fS,yi

over G using (9)

13. Compute H(X∗
G
|FS = fS, FQ(xc) = yi )

14. Compute the minimizers entropy given an evaluation at xc using (12)
15. Output xnew that minimizes the conditional entropy over the set of candidate points

For each of these possible values (or hypotheses F(x) = yi ), P̂X∗
G
|fS,yi is computed using

conditional simulations. The minimizers entropy is then obtained using (12). These opera-
tions are carried out on a discrete set of candidate evaluation points (see Sect. 5.2 for some
details on the choice of this set), and a new evaluation of f is finally performed at a point that
minimizes minimizers entropy. Next, as in the EGO algorithm, the covariance parameters
are re-estimated and the model re-computed. The procedure for the choice of an additional
evaluation point is described in Table 1.

When the number of additional function evaluations is not specified beforehand, we pro-
pose to use as a stopping criterion the conditional probability that the global minimum of the
GP model be no further apart of fmin = minxi∈S f (xi ) (the best function value yet obtained)
than a given tolerance threshold δ. The algorithm then stops when

P(F∗ < fmin + δ|FS = fS) < PStop,

with F∗ = minx ∈G F(x), and PStop ∈ [0, 1] a critical value to be chosen by the user.
Proposed in [18], this stopping criterion is well suited here, since evaluating the repartition
function of f (x∗) does not require any additional computation. We can indeed use the con-
ditional simulations that have been performed to approximate the conditional distribution of
X∗

G
for this purpose, provided that we keep track, for each of them, not only of a global mini-

mizer, but also of the minimum. The histogram thus obtained can then easily be transformed
into a simple approximation of the conditional repartition function of the minimum.

5.2 Computational complexity

With the previous notation, n the number of evaluation points, r the number of conditional
simulations, N the number of points in G and M the number of discretized potential eval-
uation results for an evaluation, the computational complexity for the approximation of the
minimizers entropy (Steps 7–14 in Table 1) is as follows:

− computing Kriging coefficients at every point in G (Step 8): O(n2 N ), as (20) (to be
found in appendix) has to be solved N times. The covariance matrix can be factorized,
and Kriging at an untried point is then simply in O(n2),
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− constructing conditional simulations (Step 10): O(nr N ) (M is not involved since the
main part of the conditioning procedure described by (8) can be carried out outside the
loop on the discretized potential evaluation results),

− locating the global minimizers for each simulation by exhaustive search (Step 11):
O(r N M).

Since all other operations are in O(N ) at most, evaluating minimizers entropy at any given
point requires O(N ) operations.

To complete the description of an implementable algorithm, we must specify a choice for
G and a policy for the minimization of minimizers entropy. What follows is just an example
of a possible strategy, and many variants could be considered.

The simplest choice for G is a uniform grid on X. However, as the number of evaluations
of f increases, the spread of PX∗

G
|fS

diminishes along with the precision for the computation
of the entropy. To keep a satisfactory precision over time, G can be a random sample of points
in X, re-sampled after every evaluation of f with the distribution P̂X∗

G
|fS

. Re-sampling makes
it possible to use a set G with a smaller cardinal and to escape, at least partly, the curse of
dimensionality (to resample using P̂X∗

G
|fS

, any non-parametric density estimator could be
used along with a sampling method such as Metropolis-Hastings, see, e.g., [3]).

Ideally, to choose an additional evaluation point for f using IAGO, minimizers entropy
should be minimized over X. However, this of course is in itself a global optimization prob-
lem, with many local optima. It would be possible to design an ad-hoc optimization method
(as in [13]), but this perspective is not explored here. Instead, we evaluate the criterion exten-
sively over a chosen set of candidate points. Note that only the surrogate model is involved at
this stage, which makes the approach practical. The idea is, exactly as for the choice of G, to
use a space-filling sample covering X and resampled after each new evaluation. The current
implementation of IAGO simply uses a Latin Hyper Cube (LHC) sample, however, it would
be easy to adapt this sample iteratively using the conditional distribution of the minimizers
P̂X∗

G
|fS

as a prior. For instance, areas of the design space where the distribution is sufficiently
small could be ignored. After a few evaluations, a large portion of the design space usually
satisfies this property, and the computations saved could be used to improve knowledge on
the criterion by sampling where P̂X∗

G
|fS

is high (using the same approach as for the choice
of G).

As dimension increases, trying to cover the factor space while keeping the same accuracy
leads to an exponential increase in complexity. However, in a context of expensive function
evaluation, the objective is less to specify exactly all global minimizers (which would be
too demanding in function evaluations anyway), than to use available information efficiently
to reduce the likely areas for the location of these minimizers. This is exactly the driving
concept behind IAGO. In practice, within a set of one thousand candidate points, picking
an additional evaluation point requires about 3 min with a standard personal computer (and
this figure is relatively independent of the dimension of factor space). Moreover, the result
obtained can be trusted to be a consistent choice within this set of candidate points, in regard
of what has been assumed and learned about f .

5.3 Taking noise in account

Practical optimization problems often involve noise. This section discusses possible adapta-
tions of the optimization algorithm that make it possible to deal with noisy situations, namely
noise on the evaluation of f and noise on the factors.
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5.3.1 Noise on the evaluation of f

When the results of the evaluations of f are corrupted by noise, the algorithm must take this
fact into account. A useful tool to deal with such situations is non-interpolative Kriging (see
Sect. 8.2).

If the evaluation at xi ∈ S is assumed to be corrupted by an additive Gaussian noise
εi with known mean and variance, the Kriging prediction should no longer be interpolative.
The optimization algorithm remains nearly unchanged, except for the conditional simula-
tions. Sample paths of F , should be built conditionally to evaluation results, i.e., realizations
of the random variables f (xi ) + εi for xi ∈ S. Since the variance of the prediction error
is no longer zero at evaluation points (in other words, there is some uncertainty left on the
values of f at evaluation points), we first have to sample, at each evaluation point, from
the distribution of F conditionally to noisy evaluation results. An interpolative simulation,
based on these samples, is then built using conditioning by Kriging. An example of such a
simulation is presented on Fig. 5 for a noise variance of 0.01.

5.3.2 Noise on the factors

In many industrial design problems, the variability of the values of the factors in mass pro-
duction has a significant impact on performance. One might then want to design a system that
optimizes some performance measure while ensuring that performance uncertainty (stem-
ming from noise on the factors) remains under control. These so-called robust optimization

Fig. 5 Example of prediction by Kriging (bold line) of noisy measurements represented by squares. Dashed
lines represent 95% confidence regions for the prediction and the thin solid line is an example of conditional
simulation obtained using the method presented in Sect. 5.3.1
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problems can generally be written as

arg min
x ∈ D

J (x), (14)

with J (x) a cost function reflecting some statistical property of the corrupted performance
measure f (x + ε), where ε is a random vector accounting for noise on the factors. Classical
cost functions are:

− mean: J (x) = Eε[ f (x + ε)],
− standard deviation: J (x) = √varε( f (x + ε)),
− linear combination of mean and standard deviation: J (x)= Eε[ f (x + ε)]
+ √varε( f (x + ε)),

− α-quantile: J (x) = Qα(x) with Qα(x) such that P( f (x + ε) < Qα(x)) = α.

Using, for example, the α-quantile as a cost function, it is possible to adapt our optimization
algorithm to solve (14). Given a set of evaluation results fS at noise-free evaluation points,
and if it is possible to sample from the distribution pε of ε, a Monte Carlo approximation
Q̂α(x) of Qα(x) is easily obtained by computing f̂ (x + ε) over a set sampled from pε .
The global optimization algorithm can then be applied to Qα(x) instead of f , using pseudo-
evaluations Q̂α

S
= [Q̂α(x1), . . . , Q̂α(xn)] (recomputed after each evaluation of f ) instead of

fS. This naive approach can certainly be improved, but is sufficient to show the feasibility of
a robust approach and to illustrate on a simple example (to be presented in the next section)
the impact of ε on the evaluation points to be chosen by IAGO.

It is of course possible to combine these ideas and to deal simultaneously with noise both
on the factors and the function evaluations.

6 Illustrations

This section presents some simple examples of global optimization using IAGO, with a
regular grid as a set of candidate evaluation points. An empirical comparison with global
optimization using expected improvement is also presented. The Matérn covariance class
will be used for Kriging prediction, as it facilitates the tuning of the variance, regularity and
range of correlation of the underlying random process, but note that any kind of admissible
covariance function could have been used. The parameters of the covariance may be estimated
from the data using a maximum-likelihood approach (see Sect. 8.3).

6.1 A one-dimensional example

Consider the function with two global minimizers illustrated by Fig. 6 and defined by f :
x �−→ 4[1 − sin(x + 8 exp(x − 7))]. Given an initial design consisting of three points, the
IAGO algorithm is used to compute six additional points iteratively. The final Kriging model
is depicted in the left part of Fig. 6, along with the resulting conditional distribution for
the minimizers on the right part. After adding some noise on the function evaluations, the
variant of IAGO presented in Sect. 5.3.1 is also applied to the function with the same initial
design. In both cases, six additional evaluations have significantly reduced the uncertainty
associated with the position of the global minimizers. The remaining likely locations reduce
to small areas centered on the two actual global minimizers. In the noisy case, larger zones
are identified, a direct consequence of the uncertainty associated with the evaluations.

Figure 7 illustrates robust optimization using the same function and initial design, but
considering an additive zero-mean Gaussian noise on the factors with a standard deviation of
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Fig. 6 Example of global optimization using IAGO on a function of one variable (dotted line), with an initial
design consisting of three points (represented by squares). Six additional evaluations are carried out (triangles)
using two versions of the IAGO algorithm. The graphs on the left part of the figure account for the predictions,
while the right part presents the corresponding conditional distributions of the global minimizers. a Kriging
prediction and conditional distribution of the global minimizers based on the initial design. b Standard IAGO
algorithm (noise free case). c IAGO algorithm for noisy evaluations (the additive noise is zero-mean Gaussian
with standard deviation 0.2)

0.2. The cost function used is the 90%-quantile Q90%, which is computed on the surrogate
model but also, and only for the sake of comparison, on the true function using Monte
Carlo uncertainty propagation (the quantile is approximated using 5000 simulations). After
six iterations of the robust optimization algorithm, the distribution of the robust minimizers
is sufficiently peaked to give a good approximation of the true global robust minimizer.

These result are encouraging as they show that the requirement of fast uncertainty reduc-
tion is met. The next section provides some more examples, along with a comparison with
EGO, the EI-based global optimization algorithm.
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Fig. 7 Example of robust optimization using IAGO and the cost function Q90%. The function f (dotted line),
corrupted by an additive Gaussian noise on the factor (zero mean with a standard deviation of 0.2), is studied
starting from the initial design of three points already used in Fig. 6. Six additional evaluations are carried out
(triangles), which are used to estimate the cost function based on the Kriging model (bold line), along with
the conditional distribution of the robust minimizers (right). The cost function Q90% estimated, only for the
sake of comparison, from the true function using Monte Carlo uncertainty propagation is also provided (mixed
line)

6.2 Empirical comparison with expected improvement

Consider first the function described by Fig. 8. Given an initial design of three points, both EI
and minimizers entropy are computed. Their optimization provides two candidate evaluation
points for f , which are also presented on Fig. 8, along with the post-evaluation prediction
and conditional distribution for X∗

G
. For this example, the regularity parameter of the Matérn

covariance is set a priori to a high value (2.5). By taking in account the covariance function
of F through conditional simulations, the minimizers entropy uses regularity to conclude
faster. The resulting conditional distribution of the minimizers is then generally more peaked
using the IAGO algorithm than using the EGO algorithm (as illustrated by Fig. 8b,c).

Consider now the Branin function (see, for instance, [8]), defined as

f : [−5, 10] × [0, 15] −→ R

(x1, x2) �−→
(

x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6
)2 + 10

(
1− 1

8π

)
cos(x1)+ 10.

It has three global minimizers x∗1 ≈ (−3.14, 12.27)T, x∗2 ≈ (3.14, 2.27)T and x∗3 ≈
(9.42, 2.47)T, and the global minimum is approximately equal to 0.4. Given an initial uni-
form design of sixteen points, fifteen additional points are iteratively selected and evaluated
using the IAGO and EGO algorithms. The parameters of the Matérn covariance are estimated
on the initial design, and kept unchanged during both procedures. The positions of the eval-
uation points are presented on Fig. 9 (left), along with the three global minimizers. Table 2
summarizes the results obtained with EGO and IAGO, based on the final Kriging models
obtained with both approaches. Note that the EI criterion in EGO is maximized with a high
precision, while minimizers entropy in IAGO is computed over a thousand candidate evalua-
tion points located on a regular grid. It appears nevertheless that the algorithm using EI stalls
on a single global minimizer, while the minimizers entropy allows a relatively fast estimation
of all three of them. Besides IAGO yields a better global approximation of the supposedly
unknown function. If twenty additional evaluations are carried out (as presented in the right
part of Fig. 9), the final Kriging prediction using minimizers entropy estimates the minimum
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Fig. 8 Comparison between minimizers entropy and EI: the left side contains the Kriging predictions before
and after an additional evaluation chosen with either EI or minimizers entropy, while the right side presents the
corresponding conditional distribution of the global minimizers. a Initial prediction and minimizers distribu-
tion. b Prediction and minimizers distribution after an additional evaluation of f chosen with EI. c Prediction
and minimizers distribution after an additional evaluation of f chosen with minimizers entropy

with an error of less than 0.05 for all three minimizers (cf. Table 2), while the use of EI does
not improve the information on any minimizer any further. The difference between the two
strategies is clearly evidenced. The EI criterion, overestimating the confidence in the initial
prediction, has led to performing evaluations extremely close to one another, for a very small
information gain. In a context of expensive function evaluation, this is highly detrimental.
The entropy criterion, using the same covariance parameters, does not stack points almost
at the same location before having identified the most likely zones for the minimizers. The
use of what has been assumed and learned about the function is clearly more efficient in this
case, and this property should be highly attractive when dealing with problems of higher
dimension.
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Fig. 9 Fifteen iterations of two optimization algorithms, that differ by their criteria for selecting evaluation
points for f , on the Branin function: (top) the EI criterion is used, (bottom) the minimizers entropy criterion
is used with a thousand candidate evaluation points for f set on a regular grid (squares account for initial
data, triangles for new evaluations, and crosses give the actual locations of the three global minimizers). a 15
iterations using EGO. b 35 iterations using EGO. c 15 iterations using IAGO. d 35 iterations using IAGO

Table 2 Estimation results for the Branin function using the evaluations of Fig. 9

EGO IAGO

15 Iterations 35 Iterations 15 Iterations 35 Iterations

Euclidean distance between x∗1 and its final estimate 3.22 3.22 2.18 0.23
Value of the true function at estimated minimizer 17.95 17.95 2.59 0.40
Euclidean distance between x∗2 and its final estimate 2.40 2.40 0.44 0.18
Value of the true function at estimated minimizer 13.00 13.00 0.85 0.42
Euclidean distance between x∗3 and its final estimate 0.04 0.04 0.82 0.23
Value of the true function at estimated minimizer 0.40 0.40 1.94 0.44

7 Discussion

7.1 Robustness to uncertainty on the covariance parameters

Jones studied in [13] the potential of Kriging-based global optimization methods such as
EGO. One of his most important conclusion, is that these methods “can perform poorly if
the initial sample is highly deceptive”. An eloquent example is provided on page 373 [13],
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where a sine function is sampled using its own period, leading to a flat prediction over the
domain, associated with a small prediction error.

This potential for deception is present throughout the IAGO procedure, and should not be
ignored. To overcome this difficulty, several methods have been proposed (see, e.g., Enhanced
Method 4 in [13] or [10]), which achieve some sort of robustness to an underestimation of
the prediction error and more generally to a bad choice of covariance function. They seem
to perform better than classical algorithms, including EGO.

Comparing the IAGO approach to such methods is an interesting topic for future research.
The issue considered here was to demonstrate the interest of the minimizers entropy criterion,
and we felt that this had to be done independently from the rest of the procedure.

It is of course essential to make IAGO robust to errors in the estimation of the covariance
parameters. In many industrial problems, this can be easily done by using prior knowledge
on the unknown function to restrict the possible values for these parameters. For example,
experts of the field often have information regarding the range of values attainable by the
unknown function. This information can be directly used to restrict the search space for the
variance of the modeling process F , or even to choose it beforehand.

More generally, given the probabilistic framework used here, it should be relatively easy to
develop a Bayesian or minimax extension of IAGO to guide the estimation of the parameters
of the covariance function. A comparison with robust methods such as those detailed in [13]
will then be essential.

7.2 Conclusions and perspectives

In this paper, a stepwise uncertainty reduction strategy has been used for the sequential global
optimization of expensive-to-evaluate functions. This strategy iteratively selects a minimizer
of the conditional minimizers entropy as the new evaluation point. To compute this entropy,
a Gaussian random model of the function evaluations is used and the minimizers entropy is
estimated through Kriging and conditional simulations. At each iteration, the result of the
new evaluation is incorporated in the data base used to re-build the Kriging model (with a
possible re-estimation of the parameters of its covariance function).

We have shown on some simple examples that, compared to the classical EI-based algo-
rithm EGO, the method proposed significantly reduces the evaluation effort in the search
for global optimizers. The stepwise uncertainty reduction strategy allows the optimization
method to adapt the type of search to the information available on the function. In particular,
the minimizers entropy criterion makes full use of the assumed regularity of the unknown
function to balance global and local searches.

Choosing an adequate set of candidate points is crucial, as it must allow a good esti-
mation of a global minimizer of the criterion, while keeping computation feasible. Prom-
ising results have already been obtained with space-filling designs, and adaptive sampling
based on the conditional density of the global minimizers should be useful as dimension
increases.

Extension to constrained optimization is an obviously important topic for future investiga-
tions. When it is easy to discard the candidate points in X that do not satisfy the constraints, the
extension is trivial. For expensive-to-evaluate constraints, the extension is a major challenge.

Finally, the stepwise uncertainty reduction strategy associated with conditioning by Kri-
ging is a promising solution for the robust optimization of expensive-to-evaluate functions,
a problem that is central to many industrial situations, for which an efficient product design
must be found in the presence of significant uncertainty on the values actually taken by some
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factors in mass production. In addition, robustness to the uncertainty associated with the
estimation of the parameters of the covariance function should also be sought.

8 Appendix: modeling with Gaussian processes

This section recalls the main concepts used in this paper, namely Gaussian process modeling
and Kriging. The major results will be presented along with the general framework for the
estimation of the model parameters.

8.1 Kriging when f is evaluated exactly

Kriging [4,15] is a prediction method based on random processes that can be used to approx-
imate or interpolate data. It can also be understood as a kernel regression method, such as
splines [23] or Support Vector Regression [20]. It originates from geostatistics and is widely
used in this domain since the 60s. Kriging is also known as the Best Linear Unbiased Pre-
diction (BLUP) in statistics, and has been more recently designated as Gaussian Processes
(GP) in the 90s in the machine learning community.

As mentioned in Sect. 2.1, it is assumed that the function f is a sample path of a Gaussian
random process F . Denote by m(x) = E[F(x)] the mean function of F(x) and by k(x, y)

its covariance function, written as

k(x, y) = cov(F(x), F(y)).

Kriging then computes the BLUP of F(x), denoted by F̂(x), in the vector space generated
by the evaluations HS = span{F(x1), . . . , F(xn)}. As an element of HS, F̂(x) can be written
as

F̂(x) = λ(x)TFS. (15)

As the BLUP, F̂(x) must have the smallest variance for the prediction error

σ̂ 2(x) = E[(F̂(x)− F(x))2], (16)

among all unbiased predictors. The variance of the prediction error satisfies

σ̂ 2(x) = k(x, x)+ λ(x)TKλ(x)− 2λ(x)Tk(x), (17)

with

K = (
k(xi , x j )

)
, (i, j) ∈ [[1, n]]2

the n × n covariance matrix of F at evaluation points in S, and

k(x) = [k(x1, x), . . . , k(xn, x)]T

the vector of covariances between F(x) and FS

The prediction method [16] assumes that the mean of F(x) can be written as a finite linear
combination

m(x) = βTp(x),

where β is a vector of fixed but unknown coefficients, and

p(x) = [p1(x), . . . , pl(x)]T
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is a vector of known functions of the factor vector x. Usually these functions are monomials
of low degree in the components of x (in practice, their degree does not exceed two). These
functions may be used to reflect some prior knowledge on the unknown function. As we have
none for the examples considered here, we simply use an unknown constant.

The Kriging predictor at x is then the best linear predictor subject to the unbiasedness con-
straint E(F̂(x)) = m(x), whatever the unknown β. The unbiasedness constraint translates
into

βTP Tλ(x) = βTp(x), (18)

with

P =
⎛
⎜⎝

p(x1)
T

...

p(xn)T

⎞
⎟⎠ .

For (18) to be satisfied for all β, the Kriging coefficients must satisfy the linear constraints

P Tλ(x) = p(x), (19)

called universality constraints by Matheron. At this point, Kriging can be reformulated as
follows: find the vector of Kriging coefficients that minimizes the variance of the predic-
tion error (17) subject to the constraints (19). This problem can be solved via a Lagrangian
formulation, with µ(x) a vector of l Lagrange multipliers for the constraints in (19). The
coefficients λ(x) are then solutions of the linear system of equations

(
K P

P T 0

) (
λ(x)

µ(x)

)
=

(
k(x)

p(x)

)
, (20)

with 0 a matrix of zeros. A convenient expression for the variance of the prediction error is
obtained by substituting k(x)− Pµ(x) for Kλ(x) in (17) as justified by (20), to get

σ̂ 2(x) = E

[
F(x)− F̂(x)

]2 = k(x, x)− λ(x)Tk(x)− p(x)Tµ(x). (21)

The variance of the prediction error at x can thus be computed without any evaluation of f ,
using (20) and (21). It provides a measure of the quality associated with the Kriging predic-
tion. Evaluations of f remain needed to estimate the parameters of the covariance function
of F (if any), as will be seen in Sect. 8.3.2.

Once f has been evaluated at all evaluation points, the prediction of the value taken by f
at x becomes

f̂ (x) = λ(x)TfS, (22)

with fS = [ f (x1), . . . , f (xn)]T (fS is viewed as a sample value of FS).
It is easy to check that (20) implies that

∀ xi ∈ S, F̂(xi ) = F(xi ).

The prediction of f at xi ∈ S is then f (xi ), so Kriging is an interpolation with the consider-
able advantage that it also accounts for model uncertainty through an explicit characterization
of the prediction error.
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Remark The Bayesian framework (see, for instance, [25]) is an alternative approach to derive
the BLUP, in which F is viewed as a Bayesian prior on the output. In the case of a zero-mean
model, the conditional distribution of the function is then Gaussian with mean

E [F(x)|FS = fS] = k(x)TK−1fS, (23)

and variance

Var [F(x)|FS = fS] = k(x, x)− k(x)TK−1k(x),

which are exactly the mean (22) and variance (21) of the Kriging predictor for a model F
with zero mean. The Kriging predictor can also be viewed as the conditional mean of F(x) in
the case of an unknown mean, if the universality constraints are viewed as a non-informative
prior on β.

8.2 Kriging when f is evaluated approximately

The Kriging predictor was previously defined as the element of the space HS generated by the
random variables F(xi ) that minimizes the prediction error. A natural step is to extend this
formulation to the case of a function whose evaluations are corrupted by additive independent
and identically distributed Gaussian noise variables εi with zero mean and variance σ 2

ε . The
model of the observations then becomes Fobs

xi
= F(xi )+ εi , i = 1, . . . , n, and the Kriging

predictor for F(x) takes the form F̂(x) = λ(x)TF obs
S

with F obs
S
= [

Fobs
x1 , . . . , Fobs

xn

]T
. The

unbiasedness constraint (19) remain unchanged, while the mean-square error (2) becomes

E[F̂(x)− F(x)]2 = k(x, x)+ λ(x)T(K + σ 2
ε In)λ(x)− 2λ(x)Tk(x),

with In the identity matrix. Finally, using Lagrange multipliers as before, it is easy to show
that the coefficients λ(x) of the prediction must satisfy(

K + σ 2
ε In P

P T 0

)(
λ(x)

µ(x)

)
=

(
k(x)

p(x)

)
. (24)

The resulting prediction is no longer interpolative, but can still be viewed as the mean of the
conditional distribution of F . The variance of the prediction error is again obtained using
(21).

8.3 Covariance choice

Choosing a suitable covariance function k(·, ·) for a given f is a recurrent and fundamental
question. It involves the choice of a parametrized class (or model) of covariance, and the
estimation of its parameters.

8.3.1 Covariance classes

The asymptotic theory of Kriging [21] stresses the importance of the behaviour of the covari-
ance near the origin. This behaviour is indeed linked with the quadratic-mean regularity of the
random process. For instance, if the covariance function is continuous at the origin, then the
process will be continuous in quadratic mean. In practice, one often uses covariances that are
invariant by translation (or equivalently stationary), isotropic, and such that regularity can
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be adjusted. Non-stationary covariances are seldom used in practice, as they make parameter
estimation particularly difficult [4]. Isotropy, however, is not required and can even be inap-
propriate when the factors are of different natures. An example of an anisotropic, stationary
covariance class is k(x, y) = k(h), with h = √

(x − y)TA(x − y) where (x, y) ∈ X
2 and

A is a symmetric positive definite matrix.
A number of covariance classes are classically used (for instance, exponential h �→

σ 2 exp(−θ |h|α), product of exponentials, or polynomial). The Matérn covariance class offers
the possibility to adjust regularity with a single parameter [21]. Stein (1999) advocates the
use of the following parametrization of the Matérn class:

k(h) = σ 2

2ν−1�(ν)

(
2ν1/2h

ρ

)ν

Kν

(
2ν1/2h

ρ

)
, (25)

where Kν is the modified Bessel function of the second kind [27]. This parameterization is
easy to interpret, as ν controls regularity, σ 2 is the variance (k(0) = σ 2), and ρ represents
the range of the covariance, i.e., the characteristic correlation distance. To stress the signif-
icance and relevance of the regularity parameter, Fig. 10 shows the influence of ν on the
covariance function, and Fig. 11 demonstrates its impact on the sample paths. Since Kriging
assumes that f is a sample path of F , a careful choice of the parameters of the covariance is
essential.

Fig. 10 Matérn covariances with ρ = 0.5, σ 2 = 1. Solid line corresponds to ν = 4, dashed line to ν = 1
and dotted line to ν = 0.25
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Fig. 11 Three sample paths of a zero-mean Gaussian process with a Matérn covariance. Conventions are as
in Fig. 10: ν = 4 for the solid line, ν = 1 for the dashed line and ν = 0.25 for the dotted line

8.3.2 Covariance parameters

The parameters for a given covariance class can either be fixed using prior knowledge on
the system, or be estimated from experimental data. In geostatistics, estimation is carried
out using the adequacy between the empirical and model covariances [4]. In other areas,
cross validation [23] and maximum likelihood [21] are mostly employed. For simplicity
and generality reasons [21], the maximum-likelihood method is preferred here. Using the
joint probability density of the observed Gaussian vector, and assuming that the mean of
F(x) is zero for the sake of simplicity, one obtains the maximum-likelihood estimate of the
vector θ of the covariance parameters (see, for instance, [22]) by minimizing the negative
log-likelihood

l(θ) = n

2
log 2π + 1

2
log det K(θ)+ 1

2
f T

S
K(θ)−1fS. (26)

When the mean for F(x) is unknown, the parameters can be estimated, using for example
the REstricted Maximum Likelihood (REML, see [21]). This is the approach used for the
examples in this paper.

Figure 12 illustrates prediction by Kriging with a Matérn covariance, the parameters of
which have been estimated by REML. The prediction interpolates the data, and confidence
intervals are deduced from the square root of the variance of the prediction error to assess
the quality of the prediction between data. Figure 12 also contains a series of conditional
simulations (obtained with the method explained in Sect. 3.2), namely sample paths of F
that interpolate the data. As implied by (23), the Kriging prediction is the mean of these
conditional simulations.
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Fig. 12 Example of Kriging interpolation (bold line) for a function of one variable. The data are represented
by squares, and the covariance parameters were estimated by REML. Dashed lines delimit 95% confidence
region for the prediction. The thin solid lines are examples of conditional simulations
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